

Python Crash Course
Introduction to Programming

Michael Lappenbusch
IT-SPECIALIST APPLICATION DEVELOPMENT

Table of contents
1.Introduction to Python ... 2

a. What is Python? ... 2

b. Why should you learn Python? ... 3

c. Installing and setting up Python .. 4

2.Basics of syntax .. 5

a. Variables and data types ... 5

b. operators ... 7

c. branches and loops .. 9

d. functions and methods.. 11

3.Working with text files ... 12

a. Reading and writing files ... 12

b. Processing of text files ... 14

c. CSV files .. 16

4.Working with databases ... 18

a. make connections .. 18

b. Get queries and results ... 20

c. Insert, update and delete data .. 22

5.Creating GUI applications ... 24

a. Using Tkinter .. 24

b. Creating windows and controls ... 26

c. processing events .. 28

6.Modular Programming ... 29

a. Creating Modules .. 29

b. Import and use modules ... 31

c. Packages .. 32

7.Advanced Concepts .. 34

a. generators ... 34

b. Lambda functions .. 35

c. decorators .. 36

8. Error Handling and Debugging .. 37

a. Try except block ... 37

b. exception handling .. 39

c. Debugging with pdb ... 40

9.Applications of Python ... 41

a. Web development with Flask or Django ... 41

b. Data Analysis with Pandas ... 42

c. Machine learning with scikit-learn .. 43

imprint ... 44

1.Introduction to Python

a. What is Python?
Python is a high-quality interpreted programming language known for its simple syntax and

readability. It was developed by Guido van Rossum in 1989 and has been one of the most popular

programming languages ever since. Python is a low-level language that can be used for a variety of

applications such as web development, data analysis, artificial intelligence, desktop applications, and

more.

Some of the key features of Python are:

Interpreted: Python is an interpreted language, which means that the code is executed directly

instead of being compiled first. This makes code easier to write and debug.

Dynamically typed: Python does not require variables to be declared before they are used. A

variable's type is automatically determined when it is assigned a value.

Readability: Python has a very readable syntax that makes code easy to write and read. It places

great emphasis on indentation to keep the code structured.

Libraries and Frameworks: Python has a huge community that has developed many useful libraries

and frameworks that make it easier for developers to perform specific tasks. Examples include

NumPy and Pandas for data analysis, Django and Flask for web development, and scikit-learn for

machine learning.

Python is one of the most widely used programming languages and is used in many industries such as

finance, science, technology and entertainment. It also has a wide range of uses, from automating

tasks to developing complex applications. Python is one of the best options for beginners who want

to learn a programming language as it is easy to learn and very powerful.

b. Why should you learn Python?
There are many reasons to learn Python. Here are some of the most important:

Easy to learn: Python has a very simple and readable syntax, making it easy for beginners to become

familiar with it quickly. It's also one of the most supported languages in terms of learning materials,

from online tutorials to books and courses.

Versatility: Python can be used for a variety of tasks, from task automation and scripting to web page

development, data analysis, and artificial intelligence. It is one of the most widely used languages in

science and finance.

Large Community and Resources: Python has a very active and large community that has developed

many useful libraries, frameworks and tools. This makes it easier for developers to perform specific

tasks without reinventing everything from scratch.

Career Opportunities: Python is one of the most in-demand programming languages in the job

market as it is used in many industries. It offers career opportunities in fields such as web

development, data analysis, finance, science and technology.

Machine Learning: Python has a wide range of machine learning libraries and frameworks, such as

TensorFlow, scikit-learn, and Keras, that enable developers to create and implement powerful

machine learning models.

In summary, Python is a powerful and versatile programming language that is easy to learn and use.

It has a large community and resources that make it easier for developers to perform specific tasks. It

also offers career opportunities in many industries. Anyone interested in machine learning is in good

hands with Python.

c. Installing and setting up Python
Installing and setting up Python is a simple process that can be completed in a few steps. Here are

the steps you need to follow to install and set up Python on your computer:

Download the latest version of Python from the official Python website. There is both Python 2 and

Python 3 available, but it is recommended to use the latest version of Python 3. Choose the

installation file for your operating system (Windows, Mac or Linux).

Run the downloaded installation file and follow the instructions of the installation wizard. Make sure

the "Add Python in PATH" option is checked so Python can be accessed from anywhere on your

computer.

After the installation is complete, you should be able to invoke Python from the command line or

PowerShell on your computer. To verify that the installation was successful, open a command line or

PowerShell and type "python" or "python3". If Python is successfully installed, you should see a

command prompt asking you to enter commands.

To run Python code, you can either type it directly into the interactive command prompt or save it to

a text file with a .py extension and then invoke it from the command line.

It's also a good practice to use an integrated development environment (IDE) to write, debug, and

run Python code. Examples of common IDEs are PyCharm, Visual Studio Code, and IDLE (the built-in

IDE that comes with Python).

It is important to note that Python is available for Windows, Mac, and Linux. The installation process

may be slightly different depending on the operating system. It is also possible to install Python in a

virtual environment to isolate projects' dependencies and avoid conflicts. Tools like virtualenv and

pipenv are useful for this.

2.Basics of syntax

a. Variables and data types
In Python, variables are an important part of programming because they allow data to be stored and

manipulated. A variable is a container that holds a value that can be changed during program

execution.

To create a variable in Python, all you have to do is give the variable a name and assign it a value. The

assignment operator in Python is the equal sign (=). Example:

x = 5

In this example, the variable x is created and assigned the value 5. The value can be changed later by

assigning a new value to the variable, e.g

x = x + 1

In Python, there are different data types that can be used for different purposes:

Integers (int): This data type stores whole numbers, e.g. -5, 0, 10.

Floating point numbers (float): This data type stores floating point numbers, eg 3.14, -0.5.

Character strings (str): This data type stores character strings, eg "Hello world!"

Boolean values: This data type only stores the values "true" or "false" (false).

Lists (list): This data type stores a sequence of values enclosed in square brackets [] and separated by

commas.

Tuple: This data type stores an immutable sequence of values, enclosed in parentheses () and

separated by commas.

Sets (set): This data type stores an immutable set of elements specified in braces {} and separated by

commas.

Dictionary (dict): This data type stores a set of values represented by key-value pairs. The keys and

values are separated by colons and separated by commas.

It is important to note that since Python is a dynamically typed language, variables in Python do not

need to be explicitly declared with a data type. This means that a variable's type is automatically

recognized when it is assigned a value.

You can always check the type of a variable with the type() command. Example:

x = 5

print(type(x)) # Output: <class 'int'>

y = "Hello world"

print(type(y)) # Output: <class 'str'>

It is also possible to explicitly change the type of a variable using the int(), float(), str(), etc. functions.

Example:

x = "5"

x = int(x)

print(type(x)) # Output: <class 'int'>

It should be noted that conversion to some types is not possible, e.g. a string cannot be converted to

a list.

Overall, variables and data types are an important part of any programming language because they

allow data to be stored and manipulated. In Python, using variables and data types is very easy and

intuitive because the language is dynamically typed and does not require explicit declaration of data

types.

b. operators
Operators are symbols or characters used in a program to perform specific operations on variables

and values. There are different types of operators in Python that can be used for different purposes.

Here are some of the most common operators in Python:

Arithmetic Operators: These operators are used to perform arithmetic operations such as addition

(+), subtraction (-), multiplication (*), and division (/). Example:

x = 5

y = 2

print(x + y) # output: 7

print(x - y) # output: 3

print(x * y) # output: 10

print(x / y) # output: 2.5

Comparison operators: These operators compare two values and return a truth value. Examples are

greater than (>) , less than (<), greater than or equal to (>=), less than or equal to (<=), equal to (==),

and not equal to (!=). Example:

x = 5

y = 2

print(x > y) # Output: True

print(x < y) # Output: False

print(x == y) # Output: False

Assignment Operators: These operators are used to assign a value to a variable. The assignment

operator (=) was mentioned earlier, but there are other assignment operators that perform an

arithmetic operation and an assignment in one step. Examples are eg +=, -=, *=, /=. Example:

x = 5

x += 2 # x = x + 2

print(x) # output: 7

Logical Operators: These operators are used to create and process logical expressions. Examples are

and (and), or (or), not (not). Example:

x = True

y = False

print(x and y) # Output: False

print(x or y) # Output: True

print(not x) # Output: False

Membership Operators: These operators test whether an element is present in a sequence, such as a

list or tuple. Examples are in and not in. Example:

x = [1, 2, 3, 4]

y = 2

print(y in x) # Output: True

print(y not in x) # Output: False

Identity operators: These operators check whether two variables have the same identity. Examples

are is and is not. Example:

x = [1, 2, 3]

y = [1, 2, 3]

z = x

print(x is y) # Output: False

print(x is z) # Output: True

Overall, operators are an important part of any programming language because they allow

operations to be performed on variables and values. There are a variety of operators in Python that

can be used for different purposes, from arithmetic operations to logical and comparison operations.

Understanding the different types of operators and how they are used is important to successfully

programming in Python.

c. branches and loops
Branching and looping are important concepts in programming that allow a program's behavior to be

controlled based on certain conditions and/or repeated actions.

Branches make it possible to change a program's behavior based on certain conditions. There are

three types of branching in Python: if-else, if-elif-else, and the ternary operator.

if-else: This branch tests a condition and if the condition is true the code in the if block is executed,

otherwise the code in the else block is executed. Example:

x = 5

if x > 0:

print("x is positive")

otherwise:

print("x is negative or zero")

if-elif-else: This branch allows multiple conditions to be checked, and only the first block whose

condition is true is executed. Example:

x = 5

if x > 0:

print("x is positive")

elif x == 0:

print("x is zero")

otherwise:

print("x is negative")

Ternary Operator: This is a simplified form of if-else that can be written on a single line. Example:

x = 5

print("x is positive") if x > 0 else print("x is negative or zero")

Loops allow a specific statement or block of statements to be executed repeatedly. There are two

types of loops in Python: for loops and while loops.

for loops: A for loop executes a block of statements for each value in a sequence (such as a list or

tuple). Example:

x = [1, 2, 3, 4]

for i in x:

print(i)

while loops: A while loop executes a block of statements as long as a specified condition is true.

Example:

x = 5

while x > 0:

print(x)

x -= 1

Overall, branching and looping allow a program's behavior to be controlled based on certain

conditions and/or repeated actions. They allow the implementation of more complex program logic

and thereby increase the flexibility and adaptability of the program.

Understanding the different types of branches and loops and their uses is important to successful

programming in Python. It should also be noted that it is important to carefully define the

termination conditions of the loops in order to avoid infinite loops.

d. functions and methods
Functions and methods are an important part of programming because they allow repetitive code to

be broken down into small, reusable chunks. This improves the readability and maintainability of the

code and makes it easier to debug.

Functions are self-contained blocks of code that can perform a specific task and return a value. They

can have named arguments that can be passed when calling the function. Example:

define add(x, y):

return x + y

result = add(5, 2)

print(result) # output: 7

Methods are functions associated with a specific object. They can be called on this object and often

access its properties and states. Example:

x = "HelloWorld"

print(x.upper()) # Output: "HELLO WORLD"

In this example, upper() is a method that takes a string and converts it to uppercase.

Functions and methods make it easier to write structured and reusable code. They make it possible

to break down more complex program logic into smaller, easily understandable units, thereby

increasing the readability and maintainability of the code. It's important to choose appropriate

names for functions and methods that describe the task they perform, and it's also important to

define appropriate arguments and return values. Also the documentation of functions and methods

is important to inform other developers about the use and behavior of these units.

In Python there are also so-called anonymous functions, which are also called lambdas. These are

unnamed functions that can be defined on a single line and are often used as arguments to other

functions. Example:

x = [1, 2, 3, 4]

result = list(filter(lambda i: i > 2, x))

print(result) # output: [3, 4]

This example uses the lambda function to filter any number in list x that is greater than 2.

Overall, functions and methods are an important part of programming because they allow recurring

code to be broken down into small, reusable chunks, thereby increasing code readability and

maintainability. It is important to define appropriate names, arguments, and return values, and to

write documentation for these units to inform other developers about the use and behavior of these

units.

3.Working with text files

a. Reading and writing files
Reading and writing files is an important part of programming because it allows data to be saved and

loaded on the computer. There are several ways to read and write files in Python, each with different

suitability depending on the use case.

The open() function can be used to read files. This function opens a file and returns a File object that

can be used to access the file's contents. Example:

with open("example.txt", "r") as file:

content = file.read()

print(content)

This example opens the "example.txt" file in read mode and loads the content into the "content"

variable. The with block ensures that the file is automatically closed when the block is exited.

The open() function can also be used to write files, but the mode must be set to "w" (write) or "a"

(append). Example:

with open("example.txt", "w") as file:

file.write("Hello World!")

In this example, the file "example.txt" is opened in write mode and the text "Hello World!" written to

the file. The with block ensures that the file is automatically closed when the block is exited.

There is also the ability to read and write files using the pickle library, which allows Python objects to

be saved and loaded directly into a file. Example:

import pickle

Save

data = {"name": "John", "age": 30}

with open("data.pickle", "wb") as file:

pickle.dump(data, file)

#Load

with open("data.pickle", "rb") as file:

data = pickle.load(file)

print(data) # output: {"name": "John", "age": 30}

There are other ways, such as using CSV modules, to work with CSV files.

It is important to note that opening files in write mode will overwrite the existing file contents. If the

data is to be retained, the "a" (append) mode should be used. It is also important to ensure that the

file is always properly closed to avoid possible data loss or inconsistency.

Overall, reading and writing files is an important part of programming because it allows data to be

saved and loaded on the computer. There are several ways to read and write files in Python, each

with different suitability depending on the use case. It is important to choose the right method for

each use case and to ensure that the file is properly closed to avoid possible data loss or

inconsistency.

b. Processing of text files
Processing text files is a common use case in programming because a lot of the data is in the form of

text. There are several ways in Python to process text files, such as using string methods or regular

expressions.

A common task when processing text files is extracting certain information from the text. This can be

done using string methods such as find(), index(), startswith(), and endswith(). Example:

text = "Hello World!"

print(text.find("World")) # Output: 6

Another common task when processing text files is splitting text into separate parts. This can be done

using the split() method, which splits a string at a given delimiter and returns the resulting parts in a

list. Example:

text = "Hello World!"

parts = text.split(" ")

print(parts) # Output: ["Hello", "World!"]

Regular expressions are a powerful way to process text files, as they allow you to search and extract

complex patterns in text. In Python, the re library can be used to process regular expressions.

Example:

import right

text = "Hello World! My email is example@example.com "

email = re.search(r"[a-zA-Z0-9._%+-] +@ [a-zA-Z0-9.-]+\.[a-zA-Z]{2,}" , lyrics)

print(email.group()) # Output: " example@example.com "

Overall, there are many ways to process text files in Python, such as string methods, regular

expressions, and special libraries. It's important to choose the right method for each use case and to

ensure that the code works correctly and produces the expected results. It is also important to

carefully study the documentation and resources related to the methods and libraries used to

understand proper usage and potential limitations.

There are also special libraries and tools like NLTK (Natural Language Toolkit), spaCy and TextBlob

that can be useful for natural language processing. These libraries offer functions such as

tokenization, stemming, tagging, parsing and named entity recognition (NER) and make it possible to

perform complex analysis of texts.

Overall, processing text files is an important use case in programming and there are many ways to do

this in Python. It's important to choose the right method for each use case and to ensure that the

code works correctly and produces the expected results. It's also important to study the

documentation and resources carefully to understand proper usage and potential limitations.

c. CSV files
CSV (Comma Separated Values) files are a common use case in programming because they provide a

simple format for storing and exchanging tabular data. There are several ways to work with CSV files

in Python.

One way to read and write CSV files is to use the csv library included with Python. This library

provides a reader and a writer that make it possible to read and write CSV files. Example:

import csv

Reading a CSV file

with open("example.csv", "r") as file:

reader = csv.reader(file)

for row in reader:

print(row)

Write a CSV file

data = [["Name", "Age"], ["John", "30"], ["Jane", "25"]]

with open("example.csv", "w", newline="") as file:

writer = csv.writer(file)

writer.writerows(data)

Another way to read and write CSV files is using the pandas library. Pandas is a powerful data analysis

and processing library that allows reading and writing CSV files as DataFrames. Example:

import pandas as pd

Reading a CSV file

data = pd.read_csv("example.csv")

print(data)

Write a CSV file

data.to_csv("example.csv", index=False)

It is important to note that there are some limitations when reading and writing CSV files, such as the

right delimiter or text qualifier. In the examples above, the comma is used as a separator and not a

text qualifier. If other separators or text qualifiers are used, they must be specified accordingly in the

libraries or functions.

It is also important to note that when writing CSV files, existing files will be overwritten if the same

filename is used. It is therefore advisable to use a different file name or a backup mechanism to

avoid data loss.

Overall, CSV files are a simple and powerful format for storing and exchanging tabular data, and

there are several ways to work with these files in Python. It's important to choose the right method

for each use case and to ensure that the code works correctly and produces the expected results. It is

also important to carefully study the documentation and resources related to the libraries used to

understand proper usage and potential limitations.

4.Working with databases

a. make connections
An important programming requirement is the ability to connect to other systems, such as

databases, web APIs or external devices. In Python, there are several ways to create connections.

One way to connect to databases is to use database engines like sqlite3 or psycopg2 (for

PostgreSQL). These modules provide functions to execute SQL queries and to read and write data.

Example for SQLite:

import sqlite3

connection = sqlite3.connect("example.db")

cursor = connection.cursor()

cursor.execute("CREATE TABLE users (name TEXT, age INTEGER)")

connection.commit()

connection.close()

Another way to connect is to use libraries like requests or http.client to make HTTP requests to web

APIs and handle the responses. Example:

import requests

response = requests.get("https://jsonplaceholder.typicode.com/posts")

data = response.json()

print(data)

There is also the possibility to connect to external devices like Arduino or Raspberry Pi by using

special libraries like pyserial to open serial connections and send and receive data. Example:

import serial

ser = serial.Serial("COM3", 9600)

ser.write(b"Hello World!")

ser.close()

There are also libraries like pymodbus and minimalmodbus that allow to connect to modbus devices

and read and write data.

It is important to note that usage of different libraries and protocols may differ depending on

requirements and it is important to study the documentation and examples carefully to understand

proper usage and possible limitations. It is also important that the code works properly and delivers

the expected results and that the connections are properly closed to avoid possible problems.

b. Get queries and results
After connecting to an external system, such as a database or web API, it is important to formulate

queries and properly retrieve the results. In Python, there are different ways to run queries and

retrieve results, depending on the type of connection made.

One way to send queries to a database and retrieve results is using Cursor objects provided by

database engines such as sqlite3 or psycopg2. Example for SQLite:

import sqlite3

connection = sqlite3.connect("example.db")

cursor = connection.cursor()

cursor.execute("SELECT * FROM users")

results = cursor.fetchall()

for rows in results:

print(row)

connection.close()

Another way to send queries to a web API and get results is to use libraries like requests or

http.client to send HTTP requests and process the responses. Example:

import requests

response = requests.get("https://jsonplaceholder.typicode.com/posts")

data = response.json()

print(data)

Another way to send queries to external devices and get results is to use special libraries like pyserial

or pymodbus to open serial connections and send and receive data. Example:

import serial

ser = serial.Serial("COM3", 9600)

ser.write(b"read")

result = ser.readline()

print(result)

ser.close()

It is important to note that usage of different libraries and protocols may differ depending on

requirements and it is important to study the documentation and examples carefully to understand

proper usage and possible limitations. It is also important that the code works correctly and produces

the expected results. It's also important that the results are properly processed and parsed to ensure

they are available in the form you want them to be. In some cases it may also be necessary to filter

or sort the results before using them.

It is also important to ensure that queries and results are handled in a secure manner, especially

when dealing with sensitive data or when dealing with requests directed to an external server.

Overall, querying and retrieving results is an important aspect of programming and there are many

ways to do this in Python. It's important to choose the right method for each use case and to ensure

that the code works correctly and produces the expected results. It's also important to study the

documentation and resources carefully to understand proper usage and potential limitations.

c. Insert, update and delete data
An important aspect of working with external systems such as databases is the ability to insert,

update and delete data. There are different ways to do this in Python, depending on what kind of

connection was made.

One way to insert, update, and delete data in a database is to use cursor objects provided by

database engines such as sqlite3 or psycopg2. Example for SQLite:

import sqlite3

connection = sqlite3.connect("example.db")

cursor = connection.cursor()

Insert data

cursor.execute("INSERT INTO users (name, age) VALUES (?, ?)", ("Alice", 25))

connection.commit()

Update data

cursor.execute("UPDATE users SET age = ? WHERE name = ?", (26, "Alice"))

connection.commit()

Delete data

cursor.execute("DELETE FROM users WHERE name = ?", ("Alice"))

connection.commit()

connection.close()

Another way to insert, update, and delete data in a web API is to use libraries like requests or

http.client to send HTTP requests with methods like POST, PUT, PATCH, and DELETE and the

responses to to process. Example:

import requests

Insert data

data = {"name": "Alice", "age": 25}

response = requests.post("https://jsonplaceholder.typicode.com/users", json=data)

print(response.status_code)

Update data

data = {"age": 26}

response = requests.patch("https://jsonplaceholder.typicode.com/users/1", json=data)

print(response.status_code)

Delete data

response = requests.delete("https://jsonplaceholder.typicode.com/users/1")

print(response.status_code)

It is important to note that usage of different libraries and protocols may differ depending on

requirements and it is important to study the documentation and examples carefully to understand

proper usage and possible limitations. It is also important that the code works correctly and produces

the expected results.

It's also important to note that inserting, updating, and deleting data can be potentially sensitive

actions, and it's important to ensure that the code is working correctly and that unexpected or

unwanted results are not occurring. It is also important to ensure that only authorized users are

allowed access to these functionalities.

Overall, inserting, updating, and deleting data is an important aspect of working with external

systems, and there are many ways to do this in Python. It's important to choose the right method for

each use case and to ensure that the code works correctly and produces the expected results. It's

also important to study the documentation and resources carefully to understand proper usage and

potential limitations.

5.Creating GUI applications

a. Using Tkinter
Tkinter is the standard Python module for creating graphical user interfaces (GUIs). It provides an

easy and intuitive way to create windows, buttons, text boxes, menus and other GUI elements.

An example of using Tkinter is to create a simple window with a text box and a button:

import tkinter as tk

define on_button_click():

print(entry.get())

root = tk.Tk()

root.title("Tkinter Example")

entry = tk.Entry(root)

entry.pack()

button = tk.Button(root, text="Submit", command=on_button_click)

button.pack()

root.mainloop()

This example creates a new window and sets its title to "Tkinter Example". A text box and a button

are added and arranged. The button also has a "command" parameter that calls the on_button_click

function when the button is clicked. In this function, the value is then read from the text field and

output to the console.

Tkinter also offers a variety of other widget types that can be used to create more complex user

interfaces. Examples are list boxes, scroll bars, images, menus, etc.

It is also possible to customize the look of the GUI elements by setting various options such as colors,

fonts and sizes. Tkinter also provides the ability to use layout managers such as Pack, Grid, and Place

to control the arrangement of GUI elements.

Another useful feature of Tkinter is its event support, which allows it to react to user interactions

such as mouse clicks, key presses, and window resizing.

It's important to note that Tkinter isn't the most powerful or flexible option for creating graphical

user interfaces, but it's a good choice for smaller projects or when the needs aren't very demanding.

It's easy to understand and use, and it doesn't require any additional libraries or tools.

Overall, Tkinter is a useful tool for Python developers to create simple graphical user interfaces. It

offers a variety of widget types and customization options that allow creating a user-friendly and

responsive interface. It is important to study the documentation and samples carefully to understand

proper usage and potential limitations. It's also important to make sure that the code is working

properly and delivering the expected results.

There are also alternative libraries to Tkinter that can be used for creating graphical user interfaces in

Python, such as PyQt, wxPython and PyGTK, which may offer more features and customization

options and are more suitable for larger projects.

b. Creating windows and controls
Creating windows and controls in Tkinter is an important aspect of creating graphical user interfaces.

To create a window you can use the Tk() module. This creates a new window that will serve as the

main window for the application. Example:

import tkinter as tk

root = tk.Tk()

root.title("My Window")

root.mainloop()

To add controls like buttons, textboxes and labels you can use Tkinter's corresponding classes.

Example:

import tkinter as tk

root = tk.Tk()

root.title("My Window")

label = tk.Label(root, text="Enter your name:")

label.pack()

entry = tk.Entry(root)

entry.pack()

button = tk.Button(root, text="Submit")

button.pack()

root.mainloop()

In this example, a label, a text box, and a button are added and arranged. The pack() command is

used to arrange the controls in a simple horizontal or vertical arrangement in the window. There are

also other layout managers like grid() and place() that can be used to control the placement of

controls.

It is also possible to define events for controls, such as clicking a button, using the command

parameter. Example:

import tkinter as tk

define on_button_click():

print("Button clicked")

root = tk.Tk()

root.title("My Window")

button = tk.Button(root, text="Click me", command=on_button_click)

button.pack()

root.mainloop()

This example defines a function called on_button_click that will be called when the button is clicked.

It is important to study the documentation and examples carefully to understand the proper usage

and potential limitations of the various controls and layout managers. It's also important to make

sure that the code is working properly and delivering the expected results.

c. processing events
An important aspect of creating graphical user interfaces with Tkinter is the ability to respond to

events such as mouse clicks, key presses and window resizing.

In Tkinter, one can handle events by defining event handler functions and associating them with the

appropriate events. A commonly used method is to bind events using widget methods like bind().

Example:

import tkinter as tk

define on_button_click(event):

print("Button clicked at x=%dy=%d" % (event.x, event.y))

root = tk.Tk()

root.title("My Window")

button = tk.Button(root, text="Click me")

button.pack()

button.bind("<Button-1>", on_button_click)

root.mainloop()

This example defines a function called on_button_click that will be called when the left mouse

button is clicked on the button. The function takes an event object as an argument and prints the x

and y coordinates of the mouse pointer to the console when the button is clicked.

There are also other methods to handle events in Tkinter, such as using command parameters for

certain controls like buttons, and using event methods like after() to perform certain actions after a

certain amount of time.

It's important to note that event handling can be a complex subject and it's important to study the

documentation and examples carefully to understand proper usage and potential limitations. It's also

important to ensure that the code is working properly and delivering the expected results.

Overall, event handling is an important aspect of creating graphical user interfaces with Tkinter and

there are many ways to do this in Python. It's important to choose the right method for each use

case and to ensure that the code works correctly and produces the expected results.

6.Modular Programming

a. Creating Modules
Modular programming refers to the practice of breaking a program into small, independent, and

reusable parts called modules. This has many advantages, such as better readability and

maintainability of the code, increased reusability and better organization of the project.

In Python, you can create modules by creating a file with a .py extension and writing Python code in

it. Example:

mymodule.py

define my_function():

print("Hello from my module!")

This module can then be imported and used in another Python script. Example:

import mymodule

mymodule.my_function()

It is also possible to import only certain functions or variables from a module instead of importing the

entire module. Example:

from mymodule import my_function

my_function()

It is also possible to import a module under a different name to avoid naming conflicts. Example:

import mymodule as mm

mm.my_function()

It is important to note that there are certain conventions for naming modules and functions to

ensure that the code is easy to read and understand. It is also recommended to carefully read each

module's documentation to understand proper usage and possible limitations.

Overall, modular programming in Python allows for better code organization and reusability, which

increases project readability and maintainability, and makes projects easier to develop.

b. Import and use modules
Importing and using modules is an important aspect of modular programming in Python. It makes it

possible to use existing code in other projects and to speed up the development of projects.

In Python, you can import a module by using the import command followed by the name of the

module. Example:

import mymodule

Once a module is imported, its functions, classes, and variables can be accessed by the name of the

module followed by a period. Example:

import mymodule

mymodule.my_function()

It is also possible to import only specific functions or variables from a module using the from

command and the import command. Example:

from mymodule import my_function

my_function()

It is also possible to import a module under a different name to avoid naming conflicts. Example:

import mymodule as mm

mm.my_function()

It's important to note that when you import a module, it's only loaded once in memory, even if it's

imported in multiple scripts. This can cause problems when the module saves the state and it is

changed by multiple scripts. To avoid this, one can use the reload() module to reload the module.

It's also important to carefully read each module's documentation to understand proper usage and

possible limitations. It is also important to ensure that the imported module is suitable for the

specific needs of the project and is working correctly.

Overall, importing and using modules in Python allows for code reuse and makes projects easier to

develop. It is important to choose the correct method to import and use modules and to ensure that

the imported module works correctly and produces the expected results.

c. Packages
In Python, modules can be organized into packages to improve code organization and reusability. A

package is a collection of modules stored in a specific directory and controlled by a special file called

init.py.

To create a package one needs to create a directory containing the modules and create an empty file

called init.py in the directory. Example:

mypackage/

__init__.py

module1.py

module2.py

To access the modules in a package, one must import the package and then access the modules by

the package name and a period. Example:

import mypackage.module1

mypackage.module1.my_function()

It is also possible to import only certain functions or variables from a module within a package using

the from command and the import command. Example:

from mypackage.module1 import my_function

my_function()

It is also possible to import a package under a different name to avoid naming conflicts. Example:

import mypackage as mp

mp.module1.my_function()

There is also the possibility of sub-packages, which contain packages within packages, further

increasing code organization and reusability.

It is important to note that there are certain naming conventions for packages and modules to

ensure that the code is easy to read and understand. It is also recommended to carefully read each

package's documentation to understand proper usage and possible limitations.

Overall, using packages in Python allows for even better code organization and reusability, which

increases project readability and maintainability, and makes projects easier to develop.

7.Advanced Concepts

a. generators
In Python, generators can be used to create iterators, which allow elements of a sequence to be

generated incrementally and on demand, rather than loading the entire sequence into memory at

once. This can be very useful when processing large amounts of data or generating infinite

sequences.

A generator is created using a function that includes the yield keyword. Example:

define my_generator():

Yield 1

yield 2

yield 3

A generator object can then be created by calling the function. Example:

gen = my_generator()

The generator object can then be used to iterate through the elements of the sequence. Example:

for i in gen:

print(i)

It is also possible to use the next() object to get the next element of the generator manually.

Example:

print(next(gen))

It is important to note that a generator can only be iterated once and that the end of the generator is

reached when a StopIteration exception is thrown. To reuse a generator, a new Generator object

must be created.

There are also more advanced techniques like using generator expressions and using yield from that

make it even easier and more readable to write code.

Overall, using generators in Python allows for more efficient processing of data and better

performance when processing large amounts of data or generating infinite sequences.

b. Lambda functions
In Python, Lambda functions can be used to create anonymous functions that perform short, simple

tasks. These types of functions are very useful when used only once or when used as arguments to

other functions.

A Lambda function is created by using the lambda keyword followed by a list of arguments and an

expression. Example:

my_lambda = lambda x: x * 2

A Lambda function can then be invoked like any other function. Example:

print(my_lambda(5))

Lambda functions can also be used as arguments to other functions, especially those that expect

function objects such as map(), filter(), and reduce(). Example:

nums = [1, 2, 3, 4, 5]

squared_nums = map(lambda x: x ** 2, nums)

However, it is important to note that Lambda functions should typically only be used for small and

simple tasks, and using them in complex and large projects can be detrimental to readability.

Overall, Lambda functions in Python are a useful way to create anonymous functions that perform

short, simple tasks and can be used as arguments to other functions. However, they are best suited

for simple and short tasks and should be used with care in complex and large projects so as not to

break code readability. It is important to understand the correct use of Lambda functions and ensure

that they are used sensibly in a given context.

c. decorators
In Python, decorators can be used to modify functions or methods, adding an extra layer of

functionality without changing the original function. This makes it possible to organize and reuse

code by allowing functionality to be added or changed across multiple functions or methods.

A decorator is created by using a function that takes another function as an argument and returns it.

Example:

define my_decorator(func):

def wrapper():

print("Before function call")

func()

print("After function call")

return wrapper

A function can then be decorated by defining the decorator before the function. Example:

@my_decorator

define my_function():

print("My function")

Decorators can also be used with arguments by customizing the decorator wrapper accordingly.

Example:

define my_decorator_with_args(arg1, arg2):

define my_decorator(func):

def wrapper():

print("Before function call with args: ", arg1, arg2)

func()

print("After function call with args: ", arg1, arg2)

return wrapper

return my_decorator

@my_decorator_with_args("arg1", "arg2")

define my_function_with_args():

print("My function with args")

It is important to note that decorators must not change the signature of the original function, as this

can lead to bugs. It's also important to ensure that the decorator and the original function interact

properly to avoid unexpected results.

Overall, decorators in Python allow for a more flexible and reusable way of organizing code, allowing

functionality to be added or changed across multiple functions or methods without changing the

original functions. However, it is important to understand the proper use of decorators and ensure

they are implemented properly to avoid errors and avoid unexpected results. Decorators can also be

combined to add multiple layers of functionality. However, it is important to ensure that the code is

not compromised for readability and understandability, and that the decorators are not overly

complex.

8. Error Handling and Debugging

a. Try except block
In Python, try-except blocks can be used to catch errors that may occur during program execution.

With the help of try-except blocks, the program can continue instead of having to end completely on

an error.

A try-except block is created by putting the code that might cause an error in the try block and using

one or more except blocks to catch certain types of errors. Example:

try:

my_list = [1, 2, 3]

print(my_list[3])

except IndexError:

print("An index error occurred.")

In this example, the program tries to get the value at position 3 in the list my_list, but this raises an

IndexError because there are not enough elements in the list. The except block catches this error and

prints an error message instead of letting the program exit completely.

It is also possible to use multiple except blocks for different types of errors. Example:

try:

my_list = [1, 2, 3]

print(my_list[3])

print(my_var)

except IndexError:

print("An index error occurred.")

except NameError:

print("A name error occurred.")

It is also possible to specify an except block without an error type to catch any error that occurs in

the try block. Example:

try:

my_list = [1, 2, 3]

print(my_list[3])

print(my_var)

except:

print("An error occurred.")

However, it is important to note that in some cases it may be better not to catch errors and let the

program exit to ensure that the error is handled correctly. It is also important to ensure that error

handling is implemented correctly to ensure that the program works properly and that the errors are

reported correctly to the user or the administrator.

b. exception handling
In Python, exceptions can be used to signal errors during program execution and ensure that the

error is handled correctly. Unlike try-except blocks, which catch errors and let the program continue,

exceptions signal an error and terminate the program if the error isn't handled.

An exception is thrown by using the raise keyword followed by an exception instance. Example:

if my_var == 0:

raise ValueError("my_var cannot be zero.")

In this example, a ValueError exception is thrown if my_var is equal to zero.

It is also possible to create your own exceptions by deriving a new class from the base class

Exception. Example:

class MyException(Exception):

passport

raise MyException("My custom exception message.")

It is important to note that in some cases it may be better to use exceptions instead of try-except

blocks to ensure that the error is handled correctly and the program does not continue unexpectedly.

It is also important to ensure that exceptions are handled correctly, either by handling them in the

same function or method, or by propagating them to a higher level to ensure that the error is

correctly reported to the user or administrator.

c. Debugging with pdb
In Python, the pdb library can be used to simplify the debugging process. pdb is an interactive Python

debugger that allows you to step through code, view and change variables, and set breakpoints.

To use pdb it can be easily imported and used within the code. Example:

import pdb

define my_function():

pdb.set_trace()

my_var = 1

my_var += 1

print(my_var)

The example shown above sets a breakpoint at the point where pdb.set_trace() is called. When the

my_function function is called, the program stops at this point and the user can enter commands to

step through the code, view and change variables, and perform other debugging tasks.

pdb also provides the ability to programmatically set and remove breakpoints using the break and

clear methods. Example:

import pdb

pdb.break("my_module.py", 8)

pdb.clear("my_module.py", 8)

It is important to note that pdb is best suited for smaller projects or for debugging individual

functions or methods, and for larger projects other debugging tools such as ipdb or external

debuggers such as pudb may be better suited. It is also important to ensure that the code is cleanly

cleaned of breakpoints and other debugging calls prior to release to ensure the program is working

properly.

9.Applications of Python

a. Web development with Flask or Django
Flask and Django are both popular Python web frameworks that allow developers to create web

applications quickly and easily. Both frameworks offer extensive features for web application

development, including support for routes, templates, databases and much more.

Flask is a micro-framework that allows developers to choose their own architecture and tools and

design the application the way they want. It's easy to learn and works well for smaller projects or for

developers who want to create their own architecture. Example:

from flask import Flask, render_template

app = Flask(__name__)

@app.route("/")

define index():

return render_template("index.html")

if __name__ == "__main__":

app.run()

Django, on the other hand, is a full-stack framework that provides a complete architecture and tools

to simplify web application development. It is well suited for larger projects or for developers who

want to build a complete application quickly. Example:

from django.shortcuts import render

from django.http import HttpResponse

def index(request):

return render(request, "index.html")

Both frameworks have their own advantages and disadvantages and the choice depends on the

needs of the project and the developer's preferences. Flask is lighter and more flexible, while Django

provides a complete architecture and tooling. It's also important for developers to thoroughly

examine the documentation and community support for both frameworks to ensure they choose the

right framework for their project.

b. Data Analysis with Pandas
Pandas is a Python library that allows developers to efficiently process and analyze data. It offers a

variety of tools to load, manipulate, process, and analyze data in a variety of formats including CSV,

Excel, JSON, and SQL.

Pandas mainly uses two data structures: the Series and the DataFrame. A Series is a one-dimensional

array of data, while a DataFrame represents a tabular view of data containing rows and columns.

Both structures provide a variety of methods for processing and analyzing data. Example:

import pandas as pd

Load a CSV file into a DataFrame

df = pd.read_csv("data.csv")

Print the first 5 lines of the DataFrame

print(df.head())

Adds a new column to the DataFrame

df["new_column"] = df["column1"] + df["column2"]

Groups the data by a specified column and calculates the means

print(df.groupby("group_column").mean())

Pandas also provides the ability to filter and manipulate data with SQL-like queries by offering query

and eval methods. It also provides tools to import and export data in various formats such as CSV,

Excel, JSON and SQL. There is also the possibility of merging, merging and linking of data. Likewise,

Pandas can also perform time series analysis and processing and supports working with missing or

incomplete data.

Overall, Pandas is a must-have tool for anyone working with data in Python. It greatly facilitates the

processing and analysis of data and offers a wide range of functions and methods that allow

developers to achieve results quickly and efficiently.

c. Machine learning with scikit-learn
Scikit-learn specializes in machine learning and offers a variety of algorithms and tools that enable

developers to build models for prediction, classification, and regression.

One of the most important features of scikit-learn is its support for using pipelines. Pipelines make it

possible to automate and merge multiple steps of data preparation and model training. This makes it

easier to create reproducible and efficient machine learning workflows.

Scikit-learn also offers a variety of algorithms for classification, regression, and clustering. Some of

the most well-known algorithms are the k-nearest neighbors algorithm, the support vector machine

algorithm, and the random forest algorithm. Each of these algorithms has its own strengths and

weaknesses and is better suited to certain applications than others.

Another important concept in scikit-learn is the use of validated test data to evaluate the model's

performance. This allows the accuracy of the model to be quantified and potential problems to be

identified before it is deployed in a production environment.

In conclusion, scikit-learn is a powerful and versatile library that allows developers to implement

machine learning in Python. It offers a wide variety of algorithms and tools that make it possible to

build models for forecasting, classification and regression and to evaluate their performance. Along

with Pandas, it provides a powerful combination for data analysis and processing in Python.

imprint

This book was published under the

Creative Commons Attribution-NonCommercial-NoDerivatives (CC BY-NC-ND) license released.

This license allows others to use and share the book for free as long as they credit the author and

source of the book and do not use it for commercial purposes.

Author: Michael Lappenbusch

E-mail: admin@perplex.click

Homepage: https://www.perplex.click

Release year: 2023

mailto:admin@perplex.click
https://www.perplex.click/

